SUMMARY SHEET 10 Carbon Monoxide

			Run #1	Run #2	Run #3	Avg
Client/Plant Name		FDS 10				•
Job No.		FDS 10				
Sampling Location		FDS 10				
Run ID #		FDS 10				
Test Date		FDS 10				
Run Start Time		FDS 10				
Run Finish Time		FDS 10				
Concentration of CO measured, dry, ppm	C _{CO NDIR}	FDS 10				
Vol. fraction of CO ₂ in sample, (%CO ₂ /100)	F _{CO2}	FDS 3/3B				
Conc. of CO in stack, dry, ppm	C _{CO stack}	SS 10				
	C Stuck					

C_{CO stack} = C_{CO NDIR} (1 - F_{CO2})

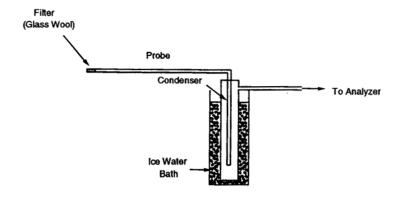


Figure F10-1. Continuous Sampling Train.

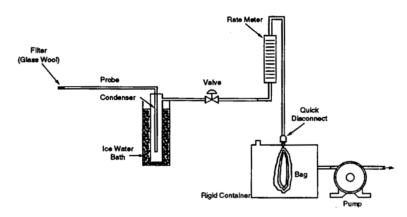


Figure F10-2. Integrated Gas-Sampling Train.

Figure F10-3. Analytical Equipment.

9/30/94: F10-1

FIELD PROCEDURE 10 Carbon Monoxide

A. Pre-Test Preparation

 Obtain a CO analyzer using nondispersive infrared spectrometry, or equivalent. Obtain from the manufacturer a certification that the analyzer meets the specifications below:

Parameter	Specification
Range (min) Output (min) Min detectable sensitivity Rise time, 90% (max) Fall time, 90% (max) Zero drift (min) Span drift (max) Precision Noise (max) Linearity (max dev) Interference rejection ratio	0-1000 ppm 0-10 mV 20 ppm 30 sec 30 sec 10% in 8 hr 10% in 8 hr ±2% of full scale ±1% of full scale 2% of full scale CO ₂ : 1000 to 1 H ₂ O: 500 to 1

- Obtain CO calibration gases (CO in N₂), certified by the manufacturer to be within ±2% of the specified concentration, as follows:
 - a. Span. ≤1.5 times the applicable performance standard.
 - b. High-Range. About 60% of span.
 - c. Mid-Range. About 30% of span.
 - d. Zero. Prepurified grade of N2.

B. Continuous Sampling

- Set up the equipment as shown in Figures F10-1 and F10-2. Ensure that all connections are leak free.
- Prepare the CO analyzer according the manufacturer's instructions. Allow at least 1 hr for warm-up. Calibrate the CO analyzer according to the manufacturer's procedures using N₂ and the calibration gases. Record the data on FDS 10.
- Place the probe in the stack at a sampling point, and purge the sampling line with stack gas.

- Connect the analyzer, and draw sample into the analyzer. Allow 5 min for the system to stabilize, then record the analyzer reading.
- 5. Before introducing each sample, purge analyzer with N₂.
- 6. After the test, check the zero and the span again.
- Determine the CO₂ content of the gas according to Method 3 or 3B integrated sampling procedure (attach appropriate data sheets).

C. Integrated Sampling

- Leak-test the flexible bag. Evacuate the bag with a pump followed by a dry gas meter. After evacuation, the meter should indicate zero flow.
- Set up the equipment as shown in a Figure F10-3 with the bag disconnected.
 Evacuate the flexible bag again, if necessary.
- 3. Place the probe in the stack at a sampling point, and purge the sampling line with stack gas.
- 4. Connect the bag. Ensure that all connections are leak free.
- 5. Sample at a rate proportional to the stack velocity. Use a pitot tube, if velocity is varying with time.
- Analyze the bag sample using appropriate procedures in section B.
- 7. Determine the CO₂ content as in step B7.

D. Alternatives

- The sample conditioning system described in Method 10A, sections 2.1.2 and 4.2, may be used instead of the silica gel and ascarite traps.
- CO₂ may be determined by weighing the ascarite CO₂ removal tube and computing CO₂ concentration from the gas volume sampled and the weight gain of the tube.

9/30/94: FD10-1

FIELD DATA SHEET 10 Analyzer Calibration

Client/Plant	Name	·			Job	#		
City/State _					Dat	e/Time		
					Personnel			
Analyzer IDa	<i></i>	·		(Attac	h manufacturer'	's certification	n) Span	
Note: Indica	nte units.						(≤1.:	5 Emission Lim
Analysis					Calibration Dat	ta		
Clock Time	Flow Rate	Vel (Δp) (if nec.)	Analyzer Resp	CO Conc (ppm)	Level	•	ylinder Value	Analyzer Response
1 Ime	riate	(if nec.)	Nesp	(ppm)	Zero		value	Пезропае
					Mid-range			
		 	 		(≈30% spa			· · · · · · · · · · · · · · · · · · ·
					High-range (≈60% spa	1		
					Attach plot of	Cylinder Valu	e vs. Analyzer	Response.
		 			Post-test Zero	and Span Ch	eck .	
					Level	Cylinder Value	Analyzer Response	Drift
					Zero			
	 				Upscale			
					Analyzer Speci	fications		
					Par	rameter	Speci	ification
	<u> </u>				Range (min)		0-1000 j 0-10,mV	
	·	Avg,	C _{CO NDIR}		Output (min) Min detectabl	e sensitivity	20 ppm	
					Rise time, 909	6 (max)	30 sec	
Note: Atta	ch FDS 3 or	3B for CO,	Analysis.		Zero drift (min		10% in 1	
		_			Precision		±2% of	full scale full scale
					Noise (max) Linearity (max		2% of ft	ıli scale
					Interference r	ejection ratio	CO ₂ : 10 H ₂ O: 50	00 to 1 0 to 1
					•			
QA/QC Che	rck							
Completene	_	Legibili	ty	Accuracy	Spec	ifications	Reas	onableness
Checked by	:		<u> </u>	75			10:	(Data)
		Personnel	(Signature	(Date)		Team Lead	er (Signature	(Date)

SUMMARY SHEET 10A Carbon Monoxide

			Run #1	Run #2	Run #3	Avg
Client/Plant Name		FDS 10A				
Job No.		FDS 10A				
Sampling Location		FDS 10A				
Run ID #		FDS 10A				
Test Date		FDS 10A				
Run Start Time		FDS 10A				
Run Finish Time		FDS 10A				
		100 10/1				
Net Traverse points		FDS 1				
Traverse Matrix (if rectangular)		FDS 1				
,						
Net Run Time, min	θ	FDS 10A				
	_					
Sampling Rate, mL/min	Q,	FDS 10A				
CO ₂ Concentration, fraction	Q _s F	FDS 10A				
2						
Field Temperature, °C	t _f	FDS 10A				
Field Barometric Pressure, mm Hg	P _b	FDS 10A				
	В					
Average Absorbance	Α	LDS 10A				
Absorbance, Reagent Blank	A,	LDS 10A				
· -	•					
Room Temperature, °C	t.	LDS 10A				
Lab Barometric Pressure, mm Hg	t _r P _b	LDS 10A				
Bag Moisture Content	Вw	LDS 10A				
	-w	250 .07.				
Cal Curve CO Concentration, ppm	C_	LDS 10A				
Bag CO Concentration, ppm dry	C _g	SS 10A				
and an amount bear and	D	30 .0				
Stack CO Concentration, ppm dry	С	SS 10A				
Times an advisoritionally being at a	•	30 ION				

$$C_b = \frac{C_g}{(1 - B_w)}$$

$$C = C_b (1 - F)$$

FIELD PROCEDURE 10A Carbon Monoxide

A. Pretest Preparation

- 1. Optional: Leak-check the bags before sampling according to FP 3.
- Loosely pack glass wool in the tip of the probe.
- Place 400 mL alkaline permanganate solution in the first two impingers and 250 mL in the third.
- 4. Evacuate the Tedlar bag completely using a vacuum pump.
- Assemble the sampling train as shown in F10A-1. Do not connect the Tedlar bag to the system at this time.
- Leak-check the sampling system as follows: plug the probe inlet, open the 3-way valve, and pull a vacuum of ~250 mm Hg on the system. No flow on the rate meter indicates the system is leak free.

B. Sampling

- Insert the probe into the stack and draw sample through the system at 300 mL/min ± 10% and purge the system for 5 min.
- Connect the evacuated Tedlar bag to the system, and sample at a rate of 300 mL/min for 30 min, or until the Tedlar bag is nearly full.
- 3. Replace the scrubber solution after every fifth sample or every 50 L of stack gas when the concentration of SO_2 or NO_x is <1000 ppm and CO_2 is <15%, and more often if greater.
- Measure the CO₂ content to the nearest 0.5% each time a CO sample is collected. A simultaneous grab sample with a Fyrite analyzer is acceptable.

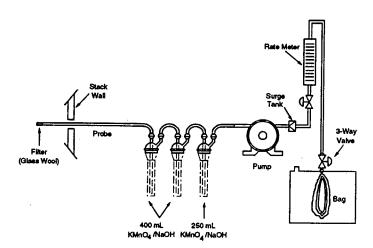


Figure F10A-1. Sampling Train.

9/30/94: FD10A-1

FIELD DATA SHEET 10A Carbon Monoxide

Client/Plant	Name					Job #	!	
City/State _				Bar Pres	ss, P _b	mm He	Date	
Test Location	on			_Personnel		 	····	
					Run #1	Run #2	Run #3	
Optional pre	e-test leak ched	k acceptable	1 7					
	ted until rotame	•		•				
Sample line	purged at 300 ore each sampl	mL/min ±10	•	nin				
Note start a	nd end times:	·	 		·			
Run #1			Run #2	1		Run #3		
Time	Rot Rdg (mL/min)	Temp (°C)	Time	Rot Rdg (mL/min)	Temp (°C)	Time	Rot Rdg (mL/min)	Temp (°C)
							Y	
· · · · · · · · · · · · · · · · · · ·								
				· ·		· · · · · · · · · · · · · · · · · · ·		
-	ļ			<u> </u>				
	<u> </u>			<u> </u>			-	
				 	<u> </u>			
	 			 				
<u> </u>			l	<u> </u>	l Run #1	Run #2	Run #3	
Sampling ra	te 300 ± 30 m	L/min?		_		·		
Sampling tin	ne ≥30 min or	bag almost	full?	_				
Fyrite CO ₂ (I	If Method 3 is a	used, attach	FDS)					
				-				
Rota	ameter Calibrat	ion Data She	et attached?	•				
QA/QC Che	ck							
	ss l	Legibility	Ac	ccuracy	Specific	ations	Reasonabi	eness
Checked by:	·	onnel (Signat						
	Perso	onnel (Signat	ure/Date)			Team Lead	ler (Signature/I	Date)

9/30/94: L10A-1

LABORATORY PROCEDURE 10A Carbon Monoxide

A. Reagents

- Alkaline Permanganate, 0.25 M
 KMnO₄/1.5 M NaOH. Dissolve 40 g KMnO₄ and 60 g NaOH in water, and dilute to 1 L.
- Sodium Hydroxide, 1 M. Dissolve 40 g NaOH in ~900 mL of water, cool, and dilute to 1 L.
- Silver Nitrate, 0.1 M. Dissolve 8.5 g AgNO₃ in water, and dilute to 500 mL.
- Para-Sulfaminobenzoic Acid (p-SABA), 0.1 M. Dissolve 10.0 g p-SABA in 0.1 M NaOH, and dilute to 500 mL with 0.1 M NaOH.
- Colorimetric Solution. Add 100 mL of p-SABA solution and 100 mL of AgNO₃ solution into a flask. Mix, and add 50 mL of 1 M NaOH with shaking (should be clear and colorless). Do not use after 2 days.
- Standard Gas Mixtures. Use at least two CO concentrations (in N₂) between 50 and 1000 ppm (NIST-traceable) to span each calibration range.

B. Equipment Preparation and Analysis

- Calibrate the reaction bulbs as follows (Use CDS 10A).
 - a. Weigh the empty bulb to ± 0.1 g.
 - b. Fill the bulb to the stopcock with water, and weigh to $\pm 0.1 \ g$.
 - c. Measure room temperature of water. Calculate the volume to ±0.001 L using the density of water at the measurement temperature.
- Collect the standards according to FP 10A to span 0-400 ppm or 400-1000 ppm, or both if samples occur in these ranges.
- Assemble the system shown in L10A-1.
 Pipet 10.0 mL of the colorimetric reagent
 into each gas reaction bulb, and attach the
 bulbs to the system.
- 4. Evacuate the reaction bulbs and leak-check the system as follows:
 - Open the stopcocks to the reaction bulbs, but leave the valve to the Tedlar bag closed.
 - Turn on the pump, fully open the coarseadjust flow valve, and slowly open the fine adjust valve until the pressure is reduced to at least 40 mm Hg.
 - c. Close the coarse adjust valve, and observe the manometer after ≥2 min.

- A pressure increase of ≥ 1 mm Hg indicates a leak.
- d. Measure the vacuum pressure to ±1 mm Hg, and close the reaction bulb stopcocks.
- Flush the manifold completely at least twice as follows:
 - Open the Tedlar bag valve, and allow the system to come to atmospheric pressure.
 - Close the bag valve, open the pump coarse adjust valve, and evacuate the system again.
- Transfer the standards and field samples from each bag into the reaction bulbs as follows (Analysis of each standard and sample requires a set of three bulbs):
 - Close the pump coarse adjust valve, open the Tedlar bag valve, and let the system fill to atmospheric pressure.
 - b. Open the stopcocks to the reaction bulbs, and let the entire system come to atmospheric pressure.
 - Close the bulb stopcocks, remove the bulbs, record the room temperature and barometric pressure to nearest mm Hg.
 - d. Place the bulbs on the shaker table with their main axis either parallel to or perpendicular to the plane of the table top.
 - e. Purge the bulb-filling system with ambient air for several minutes between samples.
- Prepare a set of three bulbs containing colorimetric reagent but no CO as a reagent blank.
- 8. Shake the samples for exactly 2 hr.
- Immediately after shaking or as quickly as possible, measure the absorbance of each bulb sample at 425 nm if CO is ≤400 ppm or at 600 nm if CO is >400 ppm.
 - Use a small portion of the sample to rinse a spectrophotometer cell several times before taking an aliquot for analysis.
 - If one cell is used to analyze multiple samples, rinse the cell several times between samples with water.
 - Use water as the reference. Reject the analysis if the blank absorbance is >0.1.

- 10. Calculate the average absorbance for each set of standards (two sets of three required for each range). Plot a calibration curve absorbance vs concentration. Draw a smooth curve through the points. The curve should be linear over the two concentration ranges.
- 11. Reject the standard set if any of the individual bulb absorbances differ from the set mean by more than 10%.
- 12. Determine the CO concentration of each bag sample using the calibration curve for the appropriate concentration range.

C. Post-Test Leak-Check

Mandatory: Leak-check the bag according to FP 3b.

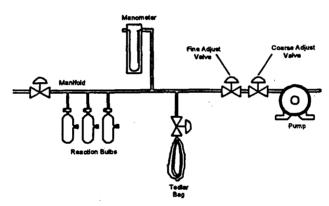


Figure L10A-1. Sample Bulb Filling System.

9/30/94: CD10A-1

CALIBRATION DATA SHEET 10A Reaction Bulb

	emperature	_ g/mL		
Bulb ID #	Tare Wgt (g)	Final Wgt (g)	Wgt Water (g)	Bulb Volume (L)
	·			1
·				
		·		· · · · · · · · · · · · · · · · · · ·
				ł

QA/QC Check Completeness	Legibility	Accuracy	Specifications	Reasonableness
Checked by:				
	Analyst (Signatur	e/Date)	Team Lead	er (Signature/Date)

9/30/94: LD10A-1

LABORATORY DATA SHEET 10A Carbon Monoxide

Client/Plant	Name					<u>. </u>	J	ob #		
City/State _								Date		
Spectrophot	ometer ID	#				Dat	e Last Calib	ration		
Room Temp	· •	C Bar	Press, P _b	mm	Hg	Analyst _	· · · · ·			
Note: Analy	/ze sample:	s with C	0 <400 ppm	at 425nm, sa	mples with	CO >400 p	opm at 600	nm.		
Sample No.	Sample ID #	Bulb No.	Bulb Vol., V _b (L)	Rgt Vol. in Bulb, V _r (L)	Bulb Vac Press, P _v (mm Hg)	Shaking Time (min)	Abs. vs water	Avg Abs,	A _s See eqn below	C _g (ppm)
	Blank							A _r		
	Std #1									
	Std #2							***	/	
								-		
			mperature an	sible in bag, u d barometric i	pressure (Fi			<i>,</i> ·	(LDS 10 <i>A</i>	A) to
Rm Temp (°C)	V.P. o	f H ₂ O	Rm Temp (°C)	V.P. of H ₂ O (mm Hg)	B _w		$A_s = \frac{A}{(V_b - V_b)}$	- A _r) P _b / _r) (P _b - P _v)		
4 6 8 10 12 14 16	6. 7. 8. 9. 10 12	0 0 2 .5	18 20 22 24 26 28 30	15.5 17.5 19.8 22.4 25.2 28.3 31.8		Each std al	bration curvos ≤ ± 10% zed at the sorbance of	of the set	mean?	samples
<i>QA/QC Che</i> Completene		Legi	ibility	Accura	 су		ag leak-che		sonablene	ess
Checked by	·		Analyst (S	ignature/Date	:)		Team Le	ader (Signa	ture/Date	

SUMMARY SHEET 10B Carbon Monoxide

			Run # 1	Run #2	Run #3	Avg	
Client/Plant Name		FDS 10A					
Job No.		FDS 10A					
Sampling Location		FDS 10A					
Run ID #		FDS 10A					
Test Date		FDS 10A			•		
Run Start Time		FDS 10A					
Run Finish Time		FDS 10A					
Net Traverse points		FDS 1					
Traverse Matrix (if rectangular)		FDS 1					
Net Run Time, min	θ	FDS 10A					
On the Base and today	•	500 404					
Sampling Rate, mL/min	٥°	FDS 10A					
CO ₂ Concentration, fraction	F	FDS 10A					
Field Temperature, °C	t _f	FDS 10A					
Field Barometric Pressure, mm Hg	P _b	FDS 10A					
Average Injection Area	Α	LDS 10B					
Average Response Factor	R	LDS 10B					
Room Temperature, °C	t.	LDS 10B					
Lab Barometric Pressure, mm Hg	t _r P _b	LDS 10B					
Bag Moisture Content	Bw	LDS 10B					
Cal Curve CO Concentration, ppm	С	LDS 10B					
Bag CO Concentration, ppm dry	C [₽] C ^a	LDS 10B					
bag co concentration, ppm dry	ОЬ	200 100					
Stack CO Concentration, ppm dry	С	SS 10B					

$$C_b = \frac{A}{R(1 - B_w)}$$

9/30/94: L10B-1

LABORATORY PROCEDURE 10B Carbon Monoxide

- A. Equipment Preparation and Checks
- Obtain three standard gases with nominal CO of 20-, 200-, and 1,000-ppm CO in N₂ and standard CH₄ gas of 1,000 ppm in air.
- Establish an appropriate carrier flow rate and detector temperature for the specific instrument used.
- 3. Calibrate the analyzer as follows:
 - a. Inject in triplicate each of the standard CO gases in step A1.
 - b. Calculate the average response factor (area/ppm) for each gas and the overall mean of the response factor values.
- Analyze each new tank of carrier gas with the GC analyzer in triplicate to check for contamination.

- Check the reduction catalyst efficiency as follows:
 - Bypass the heated reduction catalyst,
 and analyze in triplicate the 1,000 ppm
 CH₄ gas to calibrate the analyzer.
 - Repeat the procedure using 1,000-ppm
 CO with the catalyst in operation.
 - c. Calculate the reduction catalyst efficiency.

B. Analysis

- Purge the sample loop with sample, and then inject the sample.
- 2. Analyze each sample in triplicate, and calculate the average sample area (A).
- 3. Determine the bag CO concentration.

9/30/94: LD10B-1

LABORATORY DATA SHEET 10B Carbon Monoxide

Client/Plant Name				Job	#		
City/State				Dat	e		
Gas Chromatograph ID #			Ar	nalyst			
Room Temperature, °C							mm Hg
	Chrom	atograj	oh Operation	7			
Parameter	Setting	(1)		arameter	Setting		(1)
N ₂ cylinder pressure	psig		H ₂ flow ra	te	CC	/min	
N ₂ flow rate setting	cc/min		Oven temp	perature		°C	
N ₂ backflush flow rate	cc/min		Injection p	ort		°C	
Burner air supply	psig		Detector			°C	
Burner air flow rate	cc/min		FID stabiliz	ed?			
H ₂ cylinder pressure	psig						
Sample ID#	Injection 1 Area	Inje	Injection 2 Injection 3 Area Area		Average Area, A	ľ	ponse tor, R _i
Carrier Gas Blank Check		<u> </u>		1		1	
Cylinder ID#							
CO concentration in the cyli	nder <5 ppm?	1	· · · · ·	<u> </u>	<u>l </u>		
Reduction Catalyst Efficiency Chec	k						
1,000 ppm CH ₄ Certified value							
1,000 ppm CO Certified value							
CO response within ±5% o	f the certified gas v	alue?			· · · · · · · · · · · · · · · · · · ·	_	
Linearity Check							
20 ppm CO Certified value							
200 ppm CO Certified value							
1,000 ppm CO Certified value							
		· · · · · · · · · · · · · · · · · · ·	•	Average Respo	nse Factor (R) =		
Average response factor of	each cal gas within	±2.5%	6 of average	response factor ((R)?		

Relative standard deviation for each set of triplicate injection < ±2%?

Sample Analysis

C		Inication 4		Injunting 2	T	Candas	Majatura	CO in Dan
Samp No.	Sample ID#	Injection 1 Area	Injection 2 Area	Injection 3 Area	Avg. Area (A)	Conden- sation? (√)	Moisture in Bag (B _w)	CO in Bag (ppm)
								
								
								
					·			
		!		<u> </u>				
			· · · · · · · · · · · · · · · · · · ·					
								·- ·
							٠	
					i			
		·			_			
								

Sample	loop pur	aed with	sample	before	analysis?

$$B_{ws} = \frac{P_w}{P_s}$$

If condensate is visible in bag, use room temperature and barometric pressure (LDS 10B) to calculate $B_{\rm w}$; if not, use field temperature and barometric pressure (FDS 10A) to calculate $B_{\rm w}$.

Vapor Pressure of Water, Pw

Rm Temp (°C)	V.P. of H ₂ O (mm Hg)	Rm Temp (°C)	V.P. of H ₂ O (mm Hg)
4	6.1	18	15.5
6	7.0	20	17.5
8	8.0	22	19.8
10	9.2	24	22.4
12	10.5	26	25.2
14	12.0	28	28.3
16	13.6	30	31.8

•	Analyst (Signature/Date)		Team Leader (Signature/Date)	
Checked by:				
Completeness	Legibility	Accuracy	Specifications	Reasonableness
QA/QC Check				